Value-added course in Biotechnology

Hands-on Training in Bioinformatics Tools and Advanced Lab Techniques

Course Objective:

- To have an overview of Basic Bioinformatics tools in the research.
- To have hands-on experience in Molecular Biology experiments.

Course outcome

CO	Upon completion of this course, the students will be able to:	Knowledge
No.		Level
1	The applications of bioinformatic tools in analysing biological data.	К3
2	Understand the fundamentals molecular biology techniques	K2
3	Illustrate the approaches and techniques in rDNA technology	K2
4	Understand the various procedures in Biotech industries and research industries	К3
Knowledge Levels: K1-Remembering; K2-Understanding; K3-Applying; K4-Analyzing; K5-Evaluating; K6-Creating.		

Bioinformatics (6 hrs)

Theory

- 1. A brief introduction to biological databases
- 2. Sequence alignment
- 3. Multiple sequence alignment
- 4. Phylogenetic analysis

Practical

- 1. Nucleotide sequence databases NCBI.
- 2. Nucleotide sequence alignment BLASTn
- 3. Protein sequence alignment BLASTp.
- 4. Pairwise Sequence alignment
- 5. Multiple sequence alignment- CLUSTAL X, CLUSTAL W
- 6. Construction of phylogenetic tree using MEGA software

Molecular Biology (24 hrs)

Theory

- 1. An introduction to different types of PCR
- 2. Primer Designing

Practical

- 1. Gradient PCR
- 2. PCR
- 3. Colony PCR
- 4. cDNA synthesis and RT-PCR
- 5. Real-time PCR (Demo)

References

1. Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory Press, U.S.; 4th Edition